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In ordinary coupled-mode theory, the standard tool to analyze optical grating structures in both linear and
nonlinear regimes, the grating is usually assumed to be shallow. Here we generalize this theory in a systematic
way to include deep gratings. We do so by expanding in the exact eigenfunctions of the linear structure~the
Bloch functions! rather than simply in the forward and backward propagating modes. We show that the
resulting equations for deep gratings are qualitatively similar to those for shallow ones, except that the value of
some of the coefficients is different and that some additional nonlinear terms arise. We also discuss solutions
to these equations and point out differences from solutions of the conventional theory.
@S1063-651X~96!06208-3#

PACS number~s!: 42.79.Dj

I. INTRODUCTION

Though periodic structures have been studied for many
years, recent advances in grating fabrication in optical fibers
have renewed the interest in this area. In the structures con-
sidered here, the light propagates through the grating in a
direction perpendicular to the rulings. While most applica-
tions of fiber gratings, such as filters and dispersion compen-
sators, make use of thelinear properties of Bragg gratings,
theoretical work on the nonlinear properties of these struc-
tures~see, e.g.@1–8#!, as well as initial experiments@9–13#,
has resulted in significant insights.

The experiments by Eggletonet al. @13# most closely
match the theory described in this paper. In these experi-
ments short intense pulses from a Nd:YLF laser are incident
on a grating written in the core of an optical fiber, while the
light transmitted by the grating is monitored. Among the
observations in these experiments is that of pulse narrowing
upon propagation through the grating. This is explained in
terms of the formation of grating solitons: pulses that can
propagate through the grating structure undistorted by bal-
ancing the dispersion introduced by the grating with the non-
linearity.

While periodic structures are, of course, three dimen-
sional, it is often possible to avoid explicit reference to the
dimensions perpendicular to the direction of propagation.
Typically, the argument leading to this approximation refers
to the transverse modes of the structure~for example, the
bound modes of an optical fiber! and assumes that the modal
profiles are essentially unaffected by the periodicity; under
this assumption the problem becomes one dimensional
@14,15#. Though it is straightforward to calculate the optical
properties of a one-dimensional periodic structure exactly by
integrating the Maxwell equations@16#, it is often advanta-
geous to use a coupled-mode formalism, in which one works

with slowly varying electric-field envelope functions rather
than with the electric and magnetic fields themselves; such
approaches are numerically more efficient and can give more
physical insight. The coupled-mode equations are usually de-
rived heuristically, assuming the grating to beshallow, form-
ing a weak modulation superimposed on a uniform back-
ground @17#. This assumption allows one to expand the
electric field simply in terms of the so-called forward and
backward propagating modes of the uniform structure, each
with a slowly varying amplitude induced by the grating.

For deep gratings, i.e., gratings for which the modulation
depth of the grating is a substantial fraction of the average
refractive index, the approach sketched in the paragraph
above can no longer be applied so easily. There are two
reasons for this. The first of these is that if the grating is
deep, then it is possible that the mode profiles of the struc-
ture are significantly affected by it; this would lead to a
breakdown of the one-dimensional treatment. However, suf-
ficiently far from cutoff modal profiles often do not change
much, even if the refractive indices change considerably. The
second reason is more fundamental: if the grating is deep
then a standard coupled-mode approach applied naively
would lead to envelope functions that are not slowly varying,
invalidating the assumptions. This is clearly an indication
that the forward and backward propagating modes of the
uniform structure are no longer appropriate expansion func-
tions.

Conventional coupled-mode theory can be applied to al-
most all fiber gratings, including those used in the experi-
ments of Eggletonet al., where the refractive index modula-
tion is of order 1024. However, it should be noted that in
fiber geometries refractive index changes as large as 0.04
have been reported@18#. With such changes the validity of
the shallow grating assumption is no longer guaranteed.
More markedly, in periodic semiconductor structures con-
taining, say, GaAs and AlAs, with refractive indices 3.59 and
2.98, respectively, the shallow grating assumption is clearly
suspicious, while in proposed semiconductor-polymer sys-
tems, with refractive index ratios of over 2, conventional

*Present address: Department of Physics, Cornell University, Ith-
aca, NY 14853.

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/1969~21!/$10.00 1969 © 1996 The American Physical Society



coupled-mode theory must fail. We also note that in the deri-
vation of conventional coupled-mode theory only the aver-
age value of the nonlinearity over a period is included; any
spatial variations of the nonlinearity on the scale of a single
period is neglected. Conventional coupled-mode theory is
thus not expected to be applicable to gratings in which one of
the constituents is, say, much more nonlinear than the other.
In this paper we use the phrase ‘‘deep grating’’ to refer to
gratings where the linear index of refraction varies over a
significant fraction of its average value, as well as to shallow
nonlinear gratings where the nonlinearity varies over the
scale of a single period. We show below that these effects
have comparable consequences on the description of the
propagation of light through the grating structure.

As sketched above, for deep gratings one can identify two
different problems in identifying coupled-mode theory. In
this paper we assume from the outset that the transverse di-
mensions have been properly integrated out; in effect, there-
fore, we model the periodic structure as a thin-film stack. We
address the second, more fundamental point listed above,
namely, that the forward and backward propagating modes
of the uniform medium are inappropriate expansion func-
tions for the electromagnetic field. One might expect that in
such a case one would have to revert to the full Maxwell
equations. While this is of course possible, we show here
that, somewhat surprisingly, in certain regimes it is possible
to describe deep gratings with a set of coupled-mode equa-
tions very similar to the well-known coupled-mode equations
for shallow gratings. Thus a whole body of formalism and
insights can be carried over directly to problems involving
deep gratings. The key to constructing such a generalization
is to rely on the Bloch functions of the linear periodic me-
dium @19–21# to identify the appropriate expansion func-
tions. Since the Bloch functions are a property of the linear
structure, they can, in principle, be found straightforwardly,
for example, using methods developed in solid state physics
@19#. We show that if the theory for deep gratings is based on
the Bloch functions, the resulting equations for the field en-
velopes are very similar to those for shallow gratings, except
for different values for some of the coefficients and some
different nonlinear terms. Of equal importance perhaps is
that we present a systematic approach to solving this class of
problems.

One of our main conclusions is that the grating solitons
observed by Eggletonet al. @13# are not peculiar to shallow
gratings; indeed, though they are affected in some details, the
concept appears to be generic to nonlinear periodic media.
Though grating solitons in deep gratings were studied before
in limiting cases@2,3#, the present work is much more gen-
eral.

The outline of this paper is as follows. In Sec. II we
discuss the linear properties of one-dimensional periodic me-
dia. Then, in Sec. III we derive thek•V expansion, the op-
tical equivalent of thek•p expansion in solid state physics
@19#. In Sec. IV we introduce the multiple-scales method,
which we then apply in Secs. V and VI to nonlinear periodic
media. Then, in Sec. VII we transform the resulting equa-
tions to the standard form, leading to the coupled-mode
equations for deep gratings. We also discuss some of the
features of these equations. In Sec. VIII we give the values
of the coefficients in the present coupled-mode equations.

Then, in Sec. IX we present some of the solutions to these
equations. Finally, we discuss our results in Sec. X.

II. LINEAR EQUATIONS AND BASIS FUNCTIONS

As discussed in Sec. I, we idealize our fields as depending
on only a single spatial variable, say,z; this reduces the
problem to a one-dimensional analysis. We then write for the
electric and magnetic fields, respectively,

E~r ,t !5 x̂E~z,t !,
~1!

H~r ,t !5 ŷH~z,t !.

We neglect any magnetic effects, assume that any frequency
dependence of the dielectric constante(z) may be neglected,
and ignore for the moment any nonlinearity in the optical
response. The Maxwell equations then simplify to

]H

]t
52

1

m0

]E

]z
,

~2!

]E

]t
52

1

e0n
2~z!

]H

]z
,

wherem0 ande0 are the permeability and permittivity of free
space, respectively. We have introduced the spatially varying
index of refractionn(z)5@e(z)/e0#

1/2, which we take here to
be purely real, neglecting any extinction due to absorption or
scattering. In applications dealing with a guiding structure,
n(z) should be taken as the effective index of refraction@14#.

Instead of working with the fieldsE(z,t) andH(z,t), it is
more convenient to introduce local mode amplitudes
A6(z,t) @17,21#. Recall that, ifn(z) were uniform, a wave
traveling towardsz51` would have magnetic and electric
fields related byH5(nE)/Z0 , whereZ05(m0 /e0)

1/2 is the
vacuum impedance; similarly, a wave traveling toward
z52` would haveH52(nE)/Z0. This leads us to intro-
duce

A6~z,t !5
1

2 Fn~z!

n0
G1/2FE~z,t !6Z0

H~z,t !

n~z! G , ~3!

wheren0 is a reference refractive index. In definition~3! we
would expectA1(z,t) to identify the local component of the
electromagnetic field propagating in the forward direction
andA2(z,t) that propagating in the backward direction. The
usefulness of these amplitudes, and the motivation for the
precise form of the definitions~3!, has been discussed earlier
@17#. From Eq.~2! we can immediately derive the equations
theA6 must satisfy

]A6~z,t !

]z
6
n~z!

c

]A6~z,t !

]t
5
1

2 F]@ lnn~z!#

]z GA7~z,t !,

~4!

where the speed of lightc5(m0e0)
21/2 or

in~z!
]A

]t
5M–A, ~5!
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where we have introduced the column vector

A[FA1~z,t !
A2~z,t !G ~6!

and the matrix differential operator

M[F 2 ic
]

]z

1

2
icS ]@ lnn~z!#

]z D
2
1

2
icS ]@ lnn~z!#

]z D ic
]

]z

G . ~7!

In the notation for column vectors and matrix operators, such
asA andM , respectively, we leave implicit the dependence
on z ~and]/]z).

As the form of Eq.~5! suggests, the eigenvectors of the
matrix n21(z)M form a useful expansion basis. Writing the
eigenvectors asCm ,

Cm[Fcm
1~z!

cm
2~z!G , ~8!

and the eigenvalues asvm , it is convenient to write the
eigenvalue equation in the form

M–Cm5vmn–Cm , ~9!

where

n[Fn~z! 0

0 n~z!
G . ~10!

It is easy to confirm that the operatorM is Hermitian:
(Cn

†
–M–Cm)5(Cm

†
–M–Cn)* , where the row vector

Cm
†5†@cm

1~z!#* ,@cm
2~z!#* ‡ ~11!

and

~Cn
†
–M–Cm![E

0

L

dzCn
†
–M–Cm . ~12!

HereL is a normalization length over which we apply peri-
odic boundary conditions and thus the length over which we
require the eigenfunctionsCm to be periodic. From this it
follows that the eigenvaluesvm are real and that eigenvec-
tors of different eigenvalues are orthogonal through the met-
ric n,

~Cn
†
–n–Cm!50, vmÞvn . ~13!

Further, note that ifCm satisfies Eq.~9! with eigenvalue
vm , thenCm* defined through

Cm*[F @cm
1~z!#*

@cm
2~z!#* G , ~14!

satisfies that same equation with eigenvalue2vm . Hence-
forth we restrict ourselves to positivevm ; then, sinceA must
be real, it is convenient to expand solutions of Eq.~5! in the
form

A5(
m

~ f mCme
2 ivmt1 f m*Cm* e

ivmt!, ~15!

where the constantsfm are expansion coefficients.

Periodic structures

Our interest is in periodic media with a period that we
take to bed, so thatn(z1d)5n(z); L/d[N is thus the
number of unit cells in our normalization length. Before pro-
ceeding, it will be useful to relate ourCm to the more com-
mon expansion functions used in such a problem, the Bloch
functions for the electric field@20#. Recall first how these are
introduced. Taking thez derivative of the first of Eqs.~2! and
the t derivative of the second, we combine the results to
obtain a second-order equation forE(z,t) alone,

2c2
]2

]z2
E~z,t !1n2~z!

]2

]t2
E~z,t !50. ~16!

Seeking then a solution of the form

E~z,t !5fm~z!e2 ivmt1fm* ~z!eivmt, ~17!

where thevm is taken to be positive, we find that the
fm(z) must satisfy

2c2
]2fm~z!

]z2
5vm

2n2~z!fm~z!. ~18!

From Bloch’s theorem@19# the Bloch functionsfm(z) can
be chosen to be of the form

fmk~z!5eikzumk~z!. ~19!

Here the general indexm has been replaced by a band index
m and a reduced wave numberk @19#; k must be of the form
2pp/L, wherep is an integer, to guarantee periodicity over
the normalization lengthL andumk(z1d)5umk(z). A typi-
cal dispersion relation for thevmk is sketched in Fig. 1; we
take the values ofk to be in the first Brillouin zone, i.e., in
the range2p/d,k<p/d. From Eq. ~18! it is clear that
eigenfunctionsfkm(z) of different eigenvalues are orthogo-
nal through the metricn2(z); thus we can write@3#

E
0

L

fm8k8
* ~z!n2~z!fmk~z!dz5Ndm8mdk8k , ~20!

where we have chosen the normalization constantN5L/d to
facilitate the passage to theL→` limit.

Once a solution~17! for E(z,t) is identified, the corre-
spondingH(z,t) can be found from the first of Eqs.~2!; the
correspondingA6(z,t) then follow immediately from Eq.
~3!. Referring then to Eq.~15!, we can immediately identify
thecmk

6 (z) associated with eachfmk(z); we find

cmk
6 ~z!5

1

2 FAn~z!fmk~z!7
ic

vmk

1

An~z!

]fmk~z!

]z G ,
~21!

where the overall factor on the right-hand side is chosen to
ensure that
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~Cm8k8
†

–n–Cmk!5Ndm8mdk8k . ~22!

When a solution or approximation for thefmk(z) is con-
structed, the correspondingCmk then follow immediately
from Eq.~21!; thus, we will often refer loosely to theCmk as
‘‘Bloch functions.’’ We shall see in Sec. IV that, within a
multiple-scales analysis, the inclusion of nonlinearity is
easier using theCmk as a basis than using thefmk . This can
be traced back to the fact that an expansion corresponding to
the k•p expansion used in describing an electron in a peri-
odic potential is simpler, and more similar in form to the
electronic result, with the use of theCmk as a basis instead
of thefmk @22#. This, in turn, occurs because Eq.~5!, with its
single time derivative, is closer in form to the Schro¨dinger
equation than is Eq.~16!. It is to the above-mentioned ex-
pansion that we turn in the next section.

III. THE k –V EXPANSION

Associated with eachk ~see Fig. 1! is a set ofCmk , one
for each of the band indicesm. In this section we seek ex-
pressions forvmk8 []vmk /]k andvmk9 []2vmk /]k

2 in terms
of ~all of the! Cqk at only thek of interest; such expressions
appear naturally in the development of the following sections
and it will be useful to be able to identify them as the group
velocity vmk8 and the group velocity dispersionvmk9 .

We begin by noting that we may write thecmk
6 of Eq. ~21!

as

cmk
6 ~z!5

1

2 FAn~z!umk~z!6
ck

vmk

umk~z!

An~z!

7
ic

vmk

1

An~z!

]umk~z!

]z Geikz[hmk
6 ~z!eikz,

~23!

where we have used Eq.~19! for thefmk ; note that from the
periodicity of the umk(z) we find that we also have
hmk

6 (z1d)5hmk
6 (z). Defining a column vectorhmk in the

obvious way, we have

Cmk5hmke
ikz ~24!

and we find

M–~hmke
ikz!5eikz~M1kV!–hmk , ~25!

where

V[F c 0

0 2cG . ~26!

The expression in Eq.~25! also equalsvmkn–Cmk @Eq. ~9!#,
so using Eq.~24! we find

~M1kV!•hmk5vmkn–hmk . ~27!

Since we want to expand the photonic bands about a particu-
lar crystal momentum~indicated by K) @19#, we set
k5K1dk and defineH0[M1KV; Eq. ~27! becomes

@H01~dk!V#•hmk5vmkn–hmk . ~28!

For k close toK we now seek an expansion in powers of the
small parameterdk of hmk and vmk abouthmK and vmK ,
respectively,

vmk5vmK1~dk!vmK
~1! 1~dk!2vmK

~2! 1•••,

~29!

hmk5hmK1(
p

~dk!ap
~1!hpK1(

p
~dk!2ap

~2!hpK1•••,

where the superscripts indicate expansion coefficients asso-
ciated with the indicated powers ofdk. We restrict the sums
in the second of Eqs.~29! to pÞm; this will yield an hmk
normalized differently thanhmK , but as our interest is in the
vmK
( i ) this will not be of consequence. Substituting Eqs.~29!

into Eq. ~28! we find, respectively, for the expressions mul-
tiplying (dk)0, (dk)1, and (dk)2,

H0•hmK5vmKn–hmK ,

(
p
ap

~1!~vpK2vmK!n–hpK1V•hmK5vm
~1!n•hmK ,

~30!

(
p
ap

~2!~vpK2vmK!n•hpK1(
p
ap

~1!V•hpK

5(
p
ap

~1!vm
~1!n•hpK1vm

~2!n•hmK .

The first of Eqs.~30! is satisfied by assumption@see Eq.
~27!#. Taking the dot product of the second of Eqs.~30! with
hmK
† andhqK

† (qÞm), and in each case integrating overz, we
find

FIG. 1. Typical example of a one-dimensional photonic band
structure, showing~angular! frequency as a function ofk ~in units
of p). The frequency gaps correspond to regions of high reflection.

1972 54de STERKE, SALINAS, AND SIPE



vmK
~1! 5vmm~K !,

~31!

aq
~1!52

vqm~K !

vqK2vmK
,

respectively, where we have used the orthogonality condition
~22! and defined

vmn~k![
hmk
†
•V•hnk
N

. ~32!

Turning to the third of Eqs.~30!, take the dot product with
hmK
† and integrate overz; we find

(
p
ap

~1!vmp~K !5vmK
~2! ~33!

and, using in this the second of Eqs.~31!, we obtain

vmK
~2! 52 (

pÞm

vmp~K !vpm~K !

vpK2vmK
. ~34!

We now have only to note from Eq.~29! that
vmK
(1)5]vmK /]K andvmK

(2)5 1
2(]

2vmK /]K
2) to obtain from

Eqs.~31! and ~34! the main results of this section:

vmk8 5
]v

]k
5vmm~k!, ~35!

vmk9 5
]2v

]k2
522(

pÞm

vmp~k!vpm~k!

vpk2vmk
. ~36!

These expressions for the group velocity and group velocity
dispersion~essentially the inverse effective mass! at a point
on the photonic band structure~see Fig. 1! are very similar to
the corresponding expressions for an electron in a periodic
potential@19#. In the latter case the role ofvmp(k) is played
by a matrix element of the velocity operator; thus we will
here refer to thevmp(k) as ‘‘velocity matrix elements.’’ With
that correspondence the electronic and photonic expressions
for the group velocity are identical. The expressions for the
group velocity dispersion differ only in that the electronic
expression has an extra term due to the mass of the electron.
No such term would be expected for a photonic band struc-
ture: the only effective mass the photon has is acquired from
the lattice. The physical picture of the inverse effective mass
associated with a given band~in the electronic case, the lat-
tice contribution thereof! arising from the ‘‘interaction’’ of
the band with other bands in the lattice follows from the
perturbation-theory-like structure of Eq.~36!; it is a useful
picture in solid state physics and will also be so here. We
also note that Eq.~36! for the group velocity dispersion is
much simpler than the corresponding expression written in
terms of Bloch functions@3#, confirming the discussion fol-
lowing Eq. ~22!.

Inserting thehmk
6 (z) @Eq. ~23!# into Eq. ~32! for vmn(k),

we find

vmn~k!5
c

NE0
L

$@hmk
1 ~z!#* hnk

1 ~z!2@hmk
2 ~z!#* hnk

2 ~z!%dz

5
c

NE0
L

$@cmk
1 ~z!#*cnk

1 ~z!2@cmk
2 ~z!#*cnk

2 ~z!%dz.

~37!

The expression simplifies if we write thec6 in terms of the
corresponding Bloch functionsf @Eq. ~21!#. We find

vmn~k!

c
52

1

2

ic

N S 1

vmk
1

1

vnk
D E

0

L

fmk* ~z!
]fnk

]z
dz

5
1

2 S 1

vmk
1

1

vnk
DVmn~k!, ~38!

where

Vmn~k![2 icE
0

d

fmk* ~z!
]fnk

]z
dz ~39!

has units of frequency. We have simplified the integral in Eq.
~38! by noting that, since the integrand is periodic overd, the
integral is simplyN (5L/d) times that from 0 tod.

IV. NONLINEARITY AND MULTIPLE SCALES

We now introduce the nonlinear polarizationPNL through
PNL(rW,t)5 x̂PNL(z,t). Instead of Eqs.~2! we find

]H

]t
52

1

m0

]E

]z
,

~40!

]E

]t
52

1

e0n
2~z! F]H]z 1

]PNL

]t G
from the Maxwell equations. Taking the same definitions~3!
for A6(z,t), instead of Eq.~5! we find now

in–
]A

]t
5M•A1B, ~41!

whereB has two identical components

B6~z,t !52
i

2e0An0n~z!

]PNL

]t
. ~42!

Adopting a simple model forPNL(z,t) as resulting from a
nondispersive, third-order nonlinearity, we set@14,15#

PNL~z,t !5e0x
~3!~z!E3~z,t !, ~43!

wherex (3)(z), if not uniform, varies with the same period as
n(z), x (3)(z1d)5x (3)(z). ExpressingE(z,t) in terms of
A6(z,t) from Eqs.~3!, Eq. ~42! becomes

B6~z,t !52
in0
2

x~3!~z!

n2~z!

]

]t
$@A1~z,t !1A2~z,t !#3%.

~44!
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In the presence of this nonlinearity, Eq.~41! is not satisfied
by a solution of the form~15!. We shall construct approxi-
mate solutions of Eq.~41! by allowing the fm5 f mk in Eq.
~15! to become slowly varying in both space and time, in a
sense to be described below. In the examples we present here
there will be either one or two large componentsf mk(z,t);
these we callprincipal components of the solution@3#. The
electromagnetic field thus consists mainly of one, or of the
sum of two, Bloch function modulated by ‘‘envelope func-
tions’’ f mk(z,t).

Consider now the solution that would result,even in the
absence of nonlinearity, if we put only such principal com-
ponents into Eq.~15! with f mk(z,t50) not uniform but de-
scribing, say, a wave packet. We would expect that, to good
approximation, the solution could be described by the
f mk(z,t) acquiring a time dependence; indeed, we would ex-
pect the time dependence to involve the motion of the wave
packet~s! with group velocityvmk8 dispersing as described by
vmk9 and, if described in great enough detail, with even more
wave packet reshaping. This we confirm below. We also find
that componentsf pk for Bloch functions other than those
making up the principal components are also generated, al-
though they are smaller in magnitude; these we callcompan-
ion components@3#. If a weak nonlinearity is now intro-
duced, the only modification of this scenario is in the details
of the evolution of the amplitudesf qk(z,t) for the principal
and companion components. Of course, there is a qualitative
difference between the linear and nonlinear problems: In the
linear case the evolution of a field specified initially by one
or two nonuniformf mk(z,t50) could always be determined
by rewriting that field, according to Eq.~15! at t50, as a
sum over an infinite number ofuniform fqk ; the subsequent
field would follow then from Eq.~15! at t.0. Such a method
of solution is of course not possible in the presence of non-
linearity.

To keep track in a careful way of the ‘‘weak’’ nonlinear-
ity and ‘‘slowly varying’’ amplitudes alluded to above we
introduce a small parameterh!1. A typical function of in-
terest is then written as

f ~z,t !5F~z,hz,h2z, . . . ;t,ht,h2t, . . . !, ~45!

whereF is assumed to vary equally significantly as each of
its spatial arguments varies over a given ranged and each of
its temporal arguments varies over a given periodt. Then the
variation of f over different length and time scales is cap-
tured by the variation ofF on its different parameters. The
rangeshpd and periodshpt, p50,1,2,. . . , define themul-
tiple scalesof the problem@23#. Setting

zp5hpz,

~46!

tp5hpt,

we have

f ~z,t !5F~z0 ,z1,z2 , . . . ;t0 ,t1 ,t2 , . . . ! ~47!

and

] f

]z
5

]F

]z0
1h

]F

]z1
1h2

]F

]z2
1 . . . ,

~48!

] f

]t
5

]F

]t0
1h

]F

]t1
1h2

]F

]t2
1 . . .

explicitly exhibiting the variation off over the multiple
scales. Sometimes not all the scales appear and sometimes
forms more general than Eq.~47! are employed. In particu-
lar, for the case of a single principal component we seek an
approximate solution of the form

A5F f mk~z,t !Cmk1 (
pÞm

f pk~z,t !CpkGe2 ivmkt1c.c.,

~49!

where c.c. indicates the complex conjugate. Further, we take
heret52p/vmk andd to be the period of the lattice, corre-
sponding to the fastest time and length scales in the problem,
respectively. To simplify later expressions we introduce a
factor a to characterize a typical amplitude of the fields we
wish to treat; it is set such that theFqk

( i ) that appear below are
dimensionless and of order unity. Furthermore, we take
f qk(z,t) of the form

f mk~z,t !5aFmk
~0!~z1 ,z2 , . . . ;t1 ,t2 , . . . !, ~50!

f pk~z,t !5ahFpk
~1!~z1 ,z2 , . . . ;t1 ,t2 , . . . !

1ah2Fpk
~2!~z1 ,z2 , . . . ;t1 ,t2 , . . . !1 . . .

for pÞm. Note that the companion components (pÞm)
contain terms that are smaller than the primary component
by powers of the same parameterh that separates the differ-
ent length and time scales. The absence of a dependence of
Fmk
(0) on z0 and t0 might be guessed from the spirit of the

approach: The rapid variation on these fundamental scales is
all contained inCmk and e

2 ivmkt5e2 ivmkt0 @Eq. ~49!#, re-
spectively. Nonetheless, the validity of ansatz~49! is, in the
end verified by our ability to construct solutions of the as-
sumed form~see Secs. V and VI!.

The procedure described above is implemented by insert-
ing a form such as Eq.~49! in the nonlinear equations~41!,
using expressions such as Eq.~48! to evaluate the deriva-
tives, and then constructing the equations that must be satis-
fied for Eq. ~41! to be satisfied to successive powers ofh.
This protocol is facilitated by noting that, since
n(z)5n(z0), we can writeM @Eq. ~7!# as

M5M ~0!2 ihV
]

]z1
2 ih2V

]

]z2
1•••, ~51!

whereV is given by Eq.~26! and

M ~0!5F 2 ic
]

]z0

1

2
icS ] lnn~z0!

]z0
D

2
1

2
icS ] lnn~z0!

]z0
D ic

]

]z0

G ~52!

involves onlyz0 and]/]z0. Equation~41! then becomes
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in•F ]

]t0
1h

]

]t1
1h2

]

]t2
1••• GA

5FM ~0!2 ihV
]

]z1
2 ih2V

]

]z2
2••• G•A1B.

~53!

Since we wish to solve this equation in successive powers of
h, we obviously must relate the nonlinearity toh. Setting

x~3!~z!5xNLg~z!, ~54!

whereg(z) is of order unity and dimensionless, the dimen-
sionless quantityxNLa

2 can be taken as characterizing the
‘‘strength’’ of the nonlinearity. If the physical nonlinearity
and intensities of interest are such thatxNLa

2 is of order
hs, wheres51,2, . . . , we saythat theintensity indexis s.
Then the leading term inB will be of orderhs. By satisfying
Eq. ~53! to higher and higher powers ofh we generally
expect to get equations that better and better capture the ex-
act solution, at least in an asymptotic sense with respect to
h. But we will never press the analysis beyondhs, because
Eq. ~43! itself is an approximation to the nonlinear response;
going beyondhs without including higher-order nonlineari-
ties would, in general, be inconsistent.

In discussions of multiple-scale analyses such as these,
h is often set equal to unity at the end of the calculation,
following a similar cavalier approach sometimes taken in
perturbation theory. We will be more careful here because
the restriction that theF ’s @see Eq.~47!# vary equally sig-
nificantly as each of their parameters of a given type~spatial
or temporal! varies over a given range, and the condition
h!1, in fact determine the set of conditions over which the
equations we derive are valid; this we wish to sketch and
show how the range of validity of the equations could be in
fact determined for a given set of parameters. We now turn
to the derivation of those equations.

V. SINGLE PRINCIPAL COMPONENT

Following the approach described in Sec. IV, we now
establish the equations that the principal and companion
components ofA must satisfy if we are to have a good ap-
proximation to a solution of the full nonlinear equation~41!.
We begin with the ansatz~49! for the fieldA, proceeding
under the assumption that theFqk are of order unity and only
vary significantly as each of their spatial arguments range
over distances of order or much greater thand and as each of
their temporal arguments range over times of order or much
greater thant[2p/vmk . The equations that are then de-
rived for theFqk can be considered good approximate de-
scriptions of the dynamics as long as their solutions are in-
deed found to satisfy these requirements, which we refer to
as ‘‘consistency conditions.’’

A. Intensity index s>3: Schrödinger equation

To begin the process we must set the parameterh. If
f mk(z,t50) varies over a length of orderL@d, then the
simplest approach is to identify this variation with the scale
z1; it follows that uha(]Fmk

(0)/]z1)u.u f mk(z,t50)/Lu

.uaFmk
(0)/Lu and we can establishu]Fmk

(0)/]z1u<uFmk
(0)/du as

required if we seth>d/L. This establishes a lower limit for
h; upper limits forh are set by the conditionh!1 required
for a physically meaningful expansion in powers ofh and
certain other conditions mentioned below. We will find it
necessary to seth.gd/L, whereg.1 and is to be specified
later, to treat the range of situations of interest.

To concentrate first on the linear aspects of the dynamics,
we assume that the nonlinearity is sufficiently weak that the
intensity indexs>3; such a result could of course follow
from a small physical nonlinearity or a small amplitude of
f mk(z,t50) or both. Then, putting Eq.~49! into the exact
Eq. ~53!, the nonlinearity does not enter until we consider
powers ofh greater than or equal to 3. First note that Eq.
~53! is satisfied to orderh0 because

M ~0!
•Cmk5vmkn•Cmk ~55!

@cf. Eq. ~9!#, which holds sinceCmk depends only on
z5z0. To be satisfied to orderh1, we find that Eq.~53!
requires the condition

i
]Fmk

~0!

]t1
n•Cmk52 i

]Fmk
~0!

]z1
V•Cmk

1 (
qÞm

Fqk
~1!~vqk2vmk!n•Cqk , ~56!

while to be satisfied to orderh2 Eq. ~53! requires the condi-
tion

i
]Fmk

~0!

]t2
n•Cmk1 i (

qÞm

]Fqk
~1!

]t1
n•Cqk

52 i
]Fmk

~0!

]z2
V•Cmk1 (

qÞm
FFqk

~2!~vqk2vmk!n

2 i
]Fqk

~1!

]z1
VG•Cqk . ~57!

From each of Eqs.~56! and~57! we get an equation for each
band indexp by taking the dot product withCpk

† and inte-
grating over allz0 , which, in the spirit of this approach, is
treated as a variable independent of the otherzr , r>1. From
Eq. ~56!, for q,pÞm, we find

Fpk
~1!5

ivpm~k!

vpk2vmk

]Fmk
~0!

]z1
, ~58!

where we have used Eq.~32! for the velocity matrix element
vpm(k); for p5m we find

i
]Fmk

~0!

]t1
52 ivmk8

]Fmk
~0!

]z1
, ~59!

where we have used Eq.~35! for the group velocityvmk8
From Eq.~57! we can find an equation forFpk

(2) correspond-
ing to Eq.~58!, which we will not write down; the equation
corresponding to Eq.~59! is found to be@3#
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i
]Fmk

~0!

]t2
52 ivmk8

]Fmk
~0!

]z2
2 i (

pÞm
vmp~k!

]Fpk
~1!

]z1

52 ivmk8
]Fmk

~0!

]z2
2
1

2
vmk9

]2Fmk
~0!

]z1
2 , ~60!

where in the second form of Eq.~60! we have used Eq.~58!
for Fpk

(1) and Eq.~35! for the group velocity dispersion.
Before proceeding we examine the consistency condi-

tions, att50, to which these equations are subject. Consider
first Eq. ~59!; we require u]Fmk

(0)/]t1u<uFmk
(0)/tu

5vmkuFmk
(0)u/2p and, sinceu]Fmk

(0)/]z1u.uFmk
(0)u/gd @see the

discussion before Eq.~55!#, the condition gives

U vmk8

vmk /kG
U<g ~61!

or, equivalently,

U vmk8

vmk /k
U<gU kkG U, ~62!

wherekG[2p/d is a reciprocal lattice vector of the grating.
Equation~61! is easy to satisfy nearuku5p/d or k50 ~ex-
cept on the lowest branch of the dispersion relation where
vmk50 at k50) since therevmk8 .0. Intermediate between
these extreme values we haveuvmk8 u.uvmk /ku on the lowest
branch and ag significantly greater than unity is required to
satisfy Eq.~62!; for higher branches this is less difficult, for
thereuvmk8 u,uvmk /ku. To proceed we must assume that, for
our initial conditions, ag can be found satisfying Eq.~62! for
the Bloch function of interest, while still maintaining
h5gd/L!1.

Turning now to Eq.~58!, the consistency condition that
Fpk
(1) is of order unity or less, given thatFmk

(0) is of order unity,
requires

U vpm~k!

~vpk2vmk!d
U<g ~63!

for all pÞm. Once the Bloch states of a band structure are
evaluated, the left-hand side of Eq.~63! can be calculated
using Eq.~38!. Typically, though, forg not too large Eq.
~63! is easiest satisfied atk away from 0 andp/d; i.e., it
most generally holds at points on the dispersion relation
where all other bands are ‘‘remote’’ from the band providing
the principal component~see Fig. 1!. Next, the consistency
condition resulting from Eq.~60! is

U vmk9 kG
2

vmk
U<4pg2, ~64!

which is again easiest to satisfy, forg not too large, if all
bands are remote from bandm at pointk on the dispersion
relation. A similar result follows from the consistency con-
dition following from the equation forFpk

(2) mentioned above.
Thus the development of this section is quite generally de-
pendent on the condition of all bands other than that provid-
ing the principal component being remote, in a form that is

made precise by the equations given above. A development
that can be used when such a condition is not satisfied is
presented in Sec. VI.

Note that we have only discussed the consistency condi-
tions att50. As theFqk

( i ) evolve according to Eqs.~58!–~60!,
the resultingA @Eq. ~49!# constitutes a good approximate
solution only as long as the consistency conditions remain
satisfied; this of course must be investigated on a case-by-
case basis by examining the solutions in detail.

But let us now assume that at least for some length of
time the consistency conditions are satisfied. We can sim-
plify our results@Eqs. ~58!-~60!# by noting that, if we stop
the development at orderh2, we have to this order

ih
]

]t1
1 ih2

]

]t2
5 i

]

]t
, ~65!

ih
]

]z1
1 ih2

]

]z2
5 i

]

]z
,

h2
]2

]z1
2 5

]2

]z2

for functions that do not depend onz0 or t0. Then, combin-
ing Eqs.~59! and ~60! we find

i
] f mk

]t
1 ivmk8

] f mk

]z
1
1

2
vmk9

]2f mk

]z2
50 ~66!

@refer to Eqs.~49! and 50!#, while Eq. ~58! and the corre-
sponding equation forFpk

(2) can be combined to writef pk
(pÞm) in terms of derivatives off mk . Hence follows the
name companion component: Oncef mk is determined by
solving Eq. ~66!, the otherf pk can be found immediately;
this will quite generally be the situation in the examples
presented in this paper. Note that no nonlinear effects appear,
to this order, because we have assumed the intensity index
s>3. Equation~66! does, however, describe a wave packet
traveling with group velocityvmk8 and dispersing with group
velocity dispersionvmk9 ; with a change of variables to a
moving framet̄[t, z̄[z2vmk8 t, Eq. ~66! becomes

i
] f mk

] t̄
1
1

2
vmk9

]2f mk

] z̄2
50, ~67!

a Schro¨dinger equation. The general pattern of the expansion
is now clear. Just as higher powers ofV in the k•V expan-
sion ~Sec. III! lead to higher derivatives ofvmk with respect
to k @see Eq.~29!#, higher powers ofh lead, through succes-
sive ]p/]zp in Eq. ~53!, to higher derivatives of the ‘‘enve-
lope function’’ f mk premultiplied by higher derivatives of
vmk with respect tok. Thus, once the expected pattern is
identified, corrections to Eq.~66! can be written down ‘‘by
hand,’’ without going through the detailed analysis. Strictly
speaking, if the analysis is stopped at a given power ofh, the
consistency conditions should be checked~at least! at the
next highest order; we shall not outline that explicitly here.
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B. Intensity index s52: Nonlinear Schrödinger equation

Although the result~66! is certainly not unexpected on
physical grounds, the effort in establishing it is justified in
that the development we have presented allows a careful in-
clusion of the effects of nonlinearity. Suppose, for example,
we now assume the intensity indexs52. Then nonlinear
effects enter at the order ofh2 that we have presented here.
To see their effect we must return to Eqs.~44!. Since to
lowest order inh we have

A6~z,t !5aFmk
~0!cmk

6 ~z0!e
2 ivmkt01 c.c. ~68!

@see Eqs.~49! and ~50!#, we have to this order

A1~z,t !1A2~z,t !5aFmk
~0!An~z0!fmk~z0!e

2 ivmkt01c.c.
~69!

@see Eq.~21!#. Thus, from Eq.~44!, for the components of
B we find

B6~z,t !5b~z0!a
3uFmk

~0!u2Fmk
~0!e2 ivmkt01c.c., ~70!

where

b~z0!52
3

2
n0vmk

a3x~3!~z0!

An~z0!
fmk
2 ~z0!fmk* ~z0!. ~71!

In writing down Eq.~70! we have neglected terms that vary
ase63ivmkt0; these we discuss at the end of this section.

In the presence of nonlinearity with an intensity index
s52, the analysis leading to Eqs.~56! and ~57! leaves Eq.
~56! unchanged, since it results from orderh1. But we find a
new equation in place of Eq.~57!. It is given by Eq.~57!
with the termh22a21B added to its right-hand side, where
B is replaced by its approximation~70! above; our assump-
tion of an intensity indexs52 guarantees that this term is of
order unity@see the discussion following Eq.~54!#. Since Eq.
~56! is unchanged we still obtain

i
]Fmk

~0!

]t1
52 ivmk8

]Fmk
~0!

]z1
~72!

@cf. Eq. ~59!#, but by taking the dot product of the new ver-
sion of Eq. ~57! with Cmk

† we find a new equation for
]Fmk

(0)/]t2,

i
]Fmk

~0!

]t2
52 ivmk8

]Fmk
~0!

]z2
2
1

2
vmk9

]2Fmk
~0!

]z1
2 1

~Cmk
†
•B̂…eivmkt0

h2aN
,

~73!

where we use the parentheses notation of Sec. II@see Eq.
~12!# to denote an integral overz0; B̂ denotes the positive-
frequency part ofB, with respect tot0, as approximated by
Eq. ~70! @cf. our sign convention in Eq.~49!#. The new term
in Eq. ~73! involves

~Cmk
†
•B̂!eivmkt05uFmk

~0!u2Fmk
~0!E

0

L

@cmk
1 ~z0!

1cmk
2 ~z0!#*b~z0!dz0

5uFmk
~0!u2Fmk

~0!E
0

L
An~z0!fmk* ~z0!b~z0!dz0 ,

~74!

where we have used Eq.~21!. Using the periodicity of the
Bloch functions and the form~71! of b(z0), we find

~Cmk
†
•B̂!eivmkt0

N
52a3auFmk

~0!u2Fmk
~0! , ~75!

where

a5
3

2
n0vmkE

0

d

x~3!~z0!ufmk~z0!u4dz0 ~76!

characterizes how the Bloch functionfmk(z0) effectively
‘‘samples’’ the distribution of the nonlinearity over the unit
cell. Using Eq.~75! in Eq. ~73! and combining that with Eq.
~72! using Eqs.~65!, we find that if we stop our analysis at
orderh2 we obtain the equation

i
] f mk

]t
1 ivmk8

] f mk

]z
1
1

2
vmk9

]2f mk

]z2
1au f mku2f mk50,

~77!

where the nonlinear term now@cf. Eq. ~66!# appears at the
order of the group velocity dispersion term. In the moving
frame discussed after Eq.~66! this equation becomes

i
] f mk

] t̄
1
1

2
vmk9

]2f mk

] z̄2
1au f mku2f mk50, ~78!

a nonlinear Schro¨dinger equation. This is in agreement with
a previously derived result@3#; the formal difference in the
definition of a between the two is due only to the fact that
we here have derived the equation for the principal compo-
nent envelope functionf mk(z,t) that modulates the compo-
nents ofA @cf. Eq. ~49!#. In earlier work the envelope func-
tion was the function that modulated the Bloch function in
the principal component ofE(z,t). The latter differs from
the former by a factor ofAn0, as can be confirmed by using
Eq. ~49!, together with the equation relating the components
of A6(z,t) and E(z,t) @Eq. ~3!# and the equation relating
cmk

6 (z) andfmk(z) @Eq. ~21!#.
Note that Eq.~77! is identical in form to what one finds in

a weakly nonlinear material with no periodicity in its linear
properties, but with material dispersion; here it is simply that
the grating structure, rather than the underlying material dis-
persion, provides thevmk9 term. Inasmuch as we only have
one principal component in our expansion~49! and ~50! the
development presented here leads to only onedynamical
quantity fmk . The amplitudes of the otherf pk are ‘‘slaved’’
to f mk as companion components@Eq. ~58!#; nonetheless,
they affect the dynamics off mk through the curvature term
appearing in the equations above, manifesting the ‘‘contribu-
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tion’’ of the other bands to the effective mass of the band
providing the principal component~see the discussion at the
end of Sec. III!.

If we have a stronger nonlinearity~suppose the intensity
indexs51), then if we repeat the above analysis but stop at
order h1 we find, in the case considered here of all other
bands being remote,

i
] f mk

]t
1 ivmk8

] f mk

]z
1au f mku2f mk50. ~79!

In the moving frame used above, there is only self-phase
modulation. For such a strong nonlinearity (s51), it would,
in general, be inconsistent to add in the group velocity dis-
persion term~order h2) since, as discussed after Eq.~54!,
terms from higher-order physical nonlinearities could be ex-
pected to enter as well at that level, in combination with
higher-order contributions from the assumedx (3) nonlinear-
ity.

We close this section with a comment on the neglected
third-harmonic terms@see comments after Eq.~70!#. If such
terms are included, then in expressions for the companion
component amplitudes, contributions with resonant denomi-
nators (vpk23vmk) appear rather than with the denominator
(vpk2vmk) @cf. Eq. ~58!# that appears at lowest order. It is
certainly possible to have anvpk.3vmk , and in such a case
the formal analysis presented here fails and one must in fact
develop a theory involving coupled nonlinear Schro¨dinger
equations, as has been done in another formalism earlier
@24#. Even in the presence of such formal ‘‘resonances,’’
however, one can often be saved from this difficulty by
physical considerations. We have assumed here that the un-
derlying material is nondispersive, and while this may be a
reasonable approximation for frequenciesv close tovmk , it
often is not over frequency ranges extending tov.3vmk .
Thus the band structure formally derived at such frequencies,
and indeed the assumption of no absorption there, may well
be in error@24#. Although a detailed analysis has not been
performed, we can expect on physical grounds that in many
instances the actual material dispersion and absorption may
obviate the difficulties associated with the above-mentioned
possible resonant denominators and render the description
here based on the neglect of third-harmonic generation ad-
equate.

VI. TWO PRINCIPAL COMPONENTS

A. Intensity index s>3: Coupled-envelope-function equations
with remote band effects

We now turn to approximate solutions of Eqs.~40! in-
volving frequencies over ranges where the assumption that
all but one band is remote from the frequencies of interest is
not valid. The most striking and interesting of such cases is
when the frequencies of interest are near a band gap~see Fig.
1!. Labeling the upper and lower frequencies at that gap by
vu andv l , respectively, for frequencies in the neighborhood
of v0[1/2(vu1v l) we must expect that the functionsCu
andCl , associated withvu andv l , respectively, both con-
tribute significantly to the fieldA. Thus, instead of anA of
the form specified by Eqs.~49! and~50!, we look for a field
of the form

A5F f u~z,t !Cu1 f l~z,t !Cl1 (
pÞu,l

f p~z,t !CpGe2 iv0t01c.c.,

~80!

where

f u,l~z,t !5aFu,l
~0!~z1 ,z2 , . . . t1 ,t2 , . . . !,

f p~z,t !5ahFp
~1!~z1 ,z2 , . . . ;t1 ,t2 , . . . !

1ah2Fp
~2!~z1 ,z2 , . . . ;t1 ,t2 , . . . !1 . . .

~81!

for pÞu,l . We drop thek label at this point;k50 or
k5p/d at a band gap and all the Bloch functions involved in
the sum~80! are at whichever of thesek’s is associated with
the gap of interest. Ourh can be chosen as discussed at the
start of Sec. V, with the principal componentsFu,l

(0) playing
the role there played byFmk

(0) ; it will become clear that, since
vu85v l850 at a band gap, anh.d/L will here be generally
sufficient@cf. Eqs.~61! and~62!#. We will see that significant
coupling between the amplitudesf u(z,t) and f l(z,t) occurs
whenD[vu2v l is of orderhv0 ~or smaller!; we assume
this here.

We proceed by inserting Eq.~80! into the exact Eq.~53!
and identifying the coefficients of different powers ofh. We
begin by assuming that the intensity indexs>3, as we did at
the start of Sec. V. Then the nonlinearity does not enter to
order h2 in the expansion, which is as far as we shall go.
Note, however, an important difference between the devel-
opment here and in Sec. V: Here

in•
]AP

]t0
ÞM ~0!

•AP , ~82!

whereAP denotes the principal components ofA. The as-
sumed form ofA has at0 dependence characterized by fre-
quencyv0, which is neither the eigenfrequency ofCu nor
Cl . But, becauseD is of orderhv0, the difference in the
two terms in Eq.~82! generates contributions of orderh1.
Setting

vu2v0[hsu ,
~83!

v l2v0[hs l ,

where su,l are of orderv0, Eq. ~53! is satisfied to order
h0; for it to be satisfied to orderh1 we require

in•F ]Fu
~0!

]t1
Cu1

]Fl
~0!

]t1
Cl G5n•@suFu

~0!Cu1s lFl
~0!Cl #

2 iV•F ]Fu
~0!

]z1
Cu1

]Fl
~0!

]z1
Cl G

1 (
qÞu,l

n•CqFq
~1!~vq2v0!

~84!

and for it to be satisfied to orderh2 we require
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in•F ]Fu
~0!

]t2
Cu1

]Fl
~0!

]t2
Cl G1 i (

qÞu,l

]Fq
~1!

]t1
n•Cq

52 iV•F ]Fu
~0!

]z2
Cu1

]Fl
~0!

]z2
Cl G

1 (
qÞu,l

FnFq
~2!~vq2v0!2 i

]Fq
~1!

]z1
VG•Cq . ~85!

As in Sec. V, we now take the dot product of these equations
with Cp

† for eachp and integrate overz0. From Eq.~84! we
find, for pÞu,l , that we require

Fp
~1!5

ivpu
vp2v0

]Fu
~0!

]z1
1

ivpl
vp2v0

]Fl
~0!

]z1
, ~86!

while for p5u,l we find, respectively,

i
]Fu

~0!

]t1
5suFu

~0!2 ivul
]Fl

~0!

]z1
,

~87!

i
]Fl

~0!

]t1
5s lFl

~0!2 iv lu
]Fu

~0!

]z1
.

Herev i j corresponds to the velocity matrix element@cf. Eqs.
~38! and~39!# between the stateshi andhj at thek associated
with the band gap of interest. Equations~86! and~87! should
be compared with the corresponding Eqs.~58! and ~59! of
Sec. V. Sincevu85v l850 at a band gap, there is nothing on
the right-hand side of Eq.~87! corresponding to the right-
hand side of Eq.~59!. Rather, here, there is, to orderh1, a
coupling between theFu

(0) andFl
(0) because of the closeness

of the eigenfrequenciesvu andv l ; formally, each of these is
also ‘‘coupled to itself’’ becausev0 is used as the common
reference frequency of the fieldA. From Eq.~86! we see that
here all bandsotherthanu andl must be remote, in the sense
discussed in Sec. V concerning the corresponding Eq.~58!,
for the expansion in powers ofh to be valid.

Turning now to Eq.~85!, putting the equation intoCu
† and

Cl
† and integrating overz0 yields

i
]Fu

~0!

]t2
52 ivul

]Fl
~0!

]z2
2 i (

pÞu,l
vup

]Fp
~1!

]z1
, ~88!

i
]Fl

~0!

]t2
52 iv lu

]Fu
~0!

]z2
2 i (

pÞu,l
v lp

]Fp
~1!

]z1
.

Compare this with the corresponding equation~60! in Sec.
V. Using Eq.~86! in Eq. ~88!, it is clear that the expression
involves the terms

ṽu9[22 (
pÞu,l

vupvpu
vp2v0

, ~89!

ṽ l9[22 (
pÞu,l

v lpvpl
vp2v0

.

Except for the appearance in the denominators ofv0, rather
thanvu andv l , respectively, these are the contributions to
the dispersion at the band gap of the bandsu and l , other
than that which can be associated with their interaction with
each other, as described in thek–V expansion of Sec. III.
Combining then Eqs.~87! and~88! and using the expressions
~65! valid to orderh2, we find to that order that the envelope
functions f u(z,t) and f l(z,t) satisfy

i
] f u
]t

2
D

2
f u2vg

] f l
]z

1
1

2
ṽu9

]2f l
]z2

50, ~90!
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2
f l1vg

] f u
]z

1
1

2
ṽ l9

]2f u
]z2

50.

Here we have setvg[ iv lu . The Bloch functions may be
chosen to be purely real at the band gap; making this choice,
v lu is purely imaginary@cf. Eq. ~38!#, vg is purely real, and
vul5 ivg . Equation~90! shows how the two bandsu and l
are treated here in one class and the other bands in another:
The interaction between the envelope functions associated
with the bandsu and l appears in adynamicalsense in that
the functions must satisfy a set of coupled equations; the
interaction with the remote bands resides in the effective-
mass-type termsṽu,l9 , simply modifying the evolution of the
envelope functions through their curvature. Because of the
closeness of the bandsu and l , the first of these interactions
is described in orderh1; the second is described in order
h2. If we are content to work to orderh, the effects of the
remote bands can be neglected and Eqs.~90! simplify to

i
] f u
]t

2
D

2
f u2vg

] f l
]z

50, ~91!

i
] f l
]t

1
D

2
f l1vg

] f u
]z

50.

We show in Sec. VII that Eqs.~91! can be rewritten in the
form of the familiar coupled-mode equations. However, the
usual derivation of those equations is only valid in the limit
of a shallow grating@17#. Although Eqs.~91! lead to equa-
tions of the same form, they are valid for much stronger
gratings, as long as all other bands are remote from the gap
of interest. The coupling strength is determined for a deep
grating by the parametersD andvg , which must be evalu-
ated from the actual Bloch functions at the gap.

B. Intensity index s51: Nonlinear coupled-envelope-function
equations

We now consider a nonlinearity characterized by an in-
tensity indexs51; then it is only generally consistent to take
the analysis to orderh1, as we have previously discussed.
The only linear effect appearing to this order is the dynami-
cal coupling between the envelope functionsf u(z,t) and
f l(z,t), as described by Eqs.~91!. To include the nonlinear
effects, note that to lowest order we have

A6~z,t !5a@Fu
~0!cu

6~z0!1Fl
~0!c l

6~z0!#e
2 iv0t01c.c.

~92!

@see Eqs.~80! and ~81!#; so, using Eq.~21!, we have
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A1~z,t !1A2~z,t !5aAn~z0!@Fu
~0!fu~z0!

1Fl
~0!f l~z0!#e

2 iv0t01c.c. ~93!

Then, using Eq.~44! for the components ofB, we find

B6~z,t !52
3

2
n0v0a

3uFu
~0!fu~z0!

1Fl
~0!f l~z0!u2@Fu

~0!fu~z0!

1Fl
~0!f l~z0!#

x~3!~z0!

An~z0!
e2 iv0t01c.c., ~94!

where, as in Sec. V, we have neglected the effects of third-
harmonic generation. With an assumed intensity index
s51, B leads to an additional term on the right-hand side of
Eq. ~84! @see Eq.~53!#. Putting that new equation intoCu

†

and then intoCl
† we find, respectively

i
]Fu

~0!

]t1
5suFu

~0!2 ivul
]Fl

~0!

]z1
1

~Cu
†
•B̂!eiv0t0

haN
, ~95!
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]Fl

~0!

]t1
5s lFl

~0!2 iv lu
]Fu

~0!

]z1
1

~Cl
†
•B̂!eiv0t0

haN

rather than the simpler equations~87!; here againB̂ is the
positive-frequency part ofB, with respect tot0, this time in
the approximation of Eq.~94!.

Since we are only carrying the calculation to orderh we
can use

ih
]

]t1
5 i

]

]t
, ~96!

ih
]

]z1
5 i

]

]z

for functions that do not depend onz0 or t0, rather than the
more complicated equation~65!. Then Eqs.~95! lead directly
to the equations
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1uu~z,t !50, ~97!
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1u l~z,t !50,

where

uu,l~z,t !5
3

2
n0v0E

0

d

x~3!~ z̃!fu,l* ~ z̃!u f u~z,t !fu~ z̃!

1 f l~z,t !f l~ z̃!u2@ f u~z,t !fu~ z̃!1 f l~z,t !f l~ z̃!#dz̃

~98!

and we have used the periodicity ofx (3)( z̃) and thefu,l( z̃)
to restrict the integral to a unit cell.

In Sec. V, where only one band is of dynamical impor-
tance in the way that bothu and l are here, there is only one
coefficienta @Eq. ~76!# that describes how the sampling of

the underlyingx (3)(z0) nonlinearity by the Bloch function
fmk(z0) leads to a modification of the dynamical equation
that the envelope functionf mk(z,t) satisfies. Here Eq.~98!
spawns a number of different such coefficients, describing in
detail how the sampling of the nonlinearity by the Bloch
functions fu,l(z0) leads to a modification in the self-
interactions and mutual interactions of the associated enve-
lope functionsf u,l(z,t). Defining

apqrs5
3

2
n0v0E

0

d

x~3!~ z̃!fp* ~ z̃!fq~ z̃!f r* ~ z̃!fs~ z̃!dz̃,

~99!

expanding theuu,l(z,t), and gathering up the terms we find
that Eqs.~97! become
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1auuuuu f uu2f u1aull l u f l u2f l

1auull~2u f l u2f u1 f l
2f u* !1auuul~2u f uu2f l1 f u

2f l* !50,

~100!
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] f l
]t
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D
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f l1vg

] f u
]z

1a luuuu f uu2f u1a l l l l u f l u2f l

1a lul l ~2u f l u2f u1 f l
2f u* !1a luul~2u f uu2f l1 f u

2f l* !50.

These equations are the central result of this section. Note
that for a given band structure theapqrsmust be determined
from the Bloch functions and the distribution of the nonlin-
earity. We show in the next section that equations very simi-
lar to the usual nonlinear coupled-mode equations may be
derived from Eqs.~100!, but there are some new terms that
appear. Recall that the standard derivation of the usual non-
linear coupled-mode equations relies on the weakness of the
grating. We have not made such an assumption here; rather,
we have only required that the other bands be remote from
the two bands at the edges of the gap of interest. The new
terms that appear are a consequence of the strength of the
grating that the present formalism can describe and vanish in
the conventional limit of a shallow grating.

We note that the effect of including a nonlinearity of in-
tensity indexs51 and carrying the analysis to the order of
h1 has been to add to the simpler equations~91! that appear
to that order in the absence of any nonlinearity a series of
nonlinear terms. If instead a weaker nonlinearity of intensity
index s52 is present, the nonlinearity enters at the order of
analysis (h2) at which the dispersive contribution from the
remote bands appear in the equations; it is easy to confirm
the result that, to orderh2, the same series of nonlinear terms
are added then to the more complicated equations~90! rather
than to Eqs.~91!.

VII. TRANSFORMATION TO STANDARD COUPLED-
MODE FORM

Of the results derived until now, Eqs.~100! are different,
and have not, as far as we know, been derived in other con-
texts @21#; in this section we therefore concentrate on these
equations. First, note from definition~99! that Eqs.~100!
contain five, rather than eight, independent nonlinear coeffi-
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cients, since, for example, from Eq.~66! aull l5a lul l . In or-
der to simplify the equation further we recall that we have
assumed an expansion aboutk50 or k5p/d. Since the
group velocity at these positions vanishes, the Bloch func-
tions are real and have a definite parity. We therefore imme-
diately see from the definitions~99! thataull l anda luuu van-
ish, so that only three independent nonlinear coefficients
remain.

To cast Eqs.~100! in a more familiar form we introduce
the envelope functions@25#,

G65~ f u7 i f l !/2. ~101!

In terms of these functions, Eqs.~100! attain the form@21#

1 i
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1kG21G0uG1u2G1112G0uG2u2G1

1G1~ uG1u21uG2u2!G21G1~G1G2* 1G2G1* !G1

1G2G1
2 G2* 50, ~102!
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]G2
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1kG11G0uG2u2G2112G0uG1u2G2

1G1~ uG1u21uG2u2!G11G1~G1G2* 1G2G1* !G2

1G2G2
2 G1* 50,

where the linear coupling coefficient is given by

k5
D

2vg
, ~103!

wherevg is defined below Eq.~90!, and the nonlinear coef-
ficients

G05
1

8vg
~auuuu12auull1a l l l l !,

G15
1

8vg
~2auuuu1a l l l l !, ~104!

G25
1

8vg
~auuuu26auull1a l l l l !.

Equations~102! are similar to the usual coupled-mode
equation for shallow gratings@4#. However, note some im-
portant differences. The first of these is that the terms in Eqs.
~102! have coefficients different from the equivalent terms in
Ref. @4#. As an example, in Eq.~102! the coupling coefficient
k is given in terms of the exact eigenvalues and eigenfunc-
tions of the linear system@Eq. ~103!#. In contrast, the cou-
pling coeffient forM th-order Bragg reflection for shallow
gratings isk5pDn/l, whereDn is theM th Fourier ampli-
tude of the refractive index@4#. But the most obvious differ-
ence between Eqs.~102! and the standard nonlinear coupled-
mode equations@4# is that in the latter the nonlinear terms
with G1 andG2 do not appear.

To show that our results reduce in the appropriate way in
the shallow grating limit, recall that in this limit the Bloch
functions at the center and at the edges of the Brillouin zone
can simply be written as

cos~Mpz/d!, sin~Mpz/d!, ~105!

where the positive integerM indicates the Bragg order;M is
odd at the Brillouin zone edge, whileM is even at the center.
Though the normalization has not been given explicitly, it is
sufficient to note that all Bloch functions have identical nor-
malization prefactors. It is then easy to see that for shallow
gratings and for a uniform nonlinearityauuuu5a l l l l
53auull . From Eqs.~104! we thus find that in this limiting
caseG15G250, as required. Note more generally that for
shallow gratings the nonlinear coefficients are related to the
lowest Fourier components of the nonlinearity; indicating the
nth Fourier component ofx (3)(z) by xn

(3) we find

G0}x0
~3! , G1}x1

~3! , G2}2x2
~3! , ~106!

all with the same precoefficient. This result was obtained by
assuming that the nonlinearity has the same phase as the
refractive index distribution. This result helps explain the
significance of the nonlinear terms in Eqs.~102!. The self-
and cross-phase modulation terms, proportional toG0, are
well known and lead to a nonlinear shift in the Bragg con-
dition. The first terms proportional toG1 correspond to a
nonlinear change in the grating depth@21#; as expected, this
contribution depends only on the first Fourier component of
x (3), which varies at the same rate as the grating. The second
terms proportional toG1 in Eqs.~102! express the nonlinear
shift of the Bragg resonance due to the first Fourier compo-
nent of the electric-field density. Finally, as expected, the
phase conjugation terms proportional toG2 rely on the next
higher Fourier component of the nonlinearity of the nonlin-
ear refractive index.

Because of definition~99! the three coefficientsa are not
independent of each other. In fact, using the method de-
scribed in Ref.@26# it is easy to show that

auuuua l l l l .auull
2 , ~107!

under the assumption that the nonlinearity has the same sign
everywhere. The equality in~107! can be ruled out as it
would occur iff l

25fu
2 which is not true as they are differ-

ent eigenfunctions of a Sturm-Liouville equation. From in-
equality ~107! it can easily be shown that also

auuuu1a l l l l .2auull , ~108!

so that, in terms of theG coefficients@Eq. ~104!#,

uG0u.uG1u,uG2u. ~109!

To finish this section we illustrate some of the properties
of the Bloch functions and we discuss the transformation
~101!. Figure 2 shows the Bloch functions for a periodic
structure consisting of GaAs (n53.59) and a polymer
(n51.5). The periodd51, the thickness of the GaAs layers
is dGaAs50.25, anddpolymer50.75. The solid line represents
f l , the Bloch function at the bottom of the lowest photonic
band gap, while the dashed line isfu , that at the top of the
gap. As required for Bloch functions at the Brillouin zone
edge, both are real and have the required translational sym-
metryf(z1d)52f(z). Further, though they are similar to
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the Bloch functions for a shallow grating@Eq. ~105! with
M51#, the details are clearly different. They also have the
required properties that they have a definite parity and that
the associated energy densities peak in the correct media:
f l
2 peaks in the high-index medium, whilefu

2 peaks in the
low-index medium.

As mentioned, in the final expression of the coupled-
mode equations@Eqs.~102!# the envelope functionsG6 are
linear combinations of the envelope functionsf l ,u that mul-
tiply the Bloch functions in expression~80! for the electro-
magnetic field@see Eq.~101!#. Clearly, in the shallow grating
limit Eq. ~101! corresponds to transforming the underlying
basis functions that multiply the envelope functions, from the
simple trigonometric functions in~105! to plane waves with
wave numbers6Mp/d. More generally, the transformation
~101! can be interpreted as introducing apseudo-plane-wave
basis, i.e., plane waves with higher-order harmonics intro-
duced by the deep grating@21#. As an example, the pseudo
plane wave following from the Bloch functions in Fig. 2 is
given in Fig. 3. The solid line in Fig. 3 is the modulus of the
pseudo plane wave~left-hand scale!, while the dashed line
gives its phase~right-hand scale!. Clearly Fig. 3 does not
represent a plane wave since the modulus is not constant and
the phase does not progress linearly. Note also that the de-
viations in Fig. 3 occur on the scale of a single period and
can never be captured by a change in the envelope functions,
which vary on a much longer length scale. Finally, note that
the phase of the pseudo plane wave increases byp over a
single period, as required at the Brillouin zone edge.

VIII. COUPLED-MODE COEFFICIENTS FOR DEEP
GRATINGS

In this section we evaluate the coefficients in our coupled-
mode equations~102! for a few different cases. We first con-
sider the linear properties these equations predict; in particu-
lar, we look at the positions of the upper and lower edges of

the lowest photonic band gap. These are directly related to
the optical frequencyv0 at the center of the gap@Eq. ~80!#
and the width of the gap, which determines the coupling
coefficientk by Eq. ~103!. Shown in Fig. 4 are the frequen-
cies of the upper and lower edges of the lowest photonic
band gap in a periodic structure consisting of uniform layers
of GaAs and AlAs in units ofc/d. The GaAs layers have
thicknessdGaAs and refractive indexnGaAs53.59, while the
AlAs layers have thicknessdAlAs and refractive index
nAlAs52.98. The positions are shown as a function of the
GaAs filling fractiondGaAs/d, whered5dGaAs1dAlAs . The

FIG. 4. Exact positions~solid lines! and positions according to
the shallow grating approximation~dashed lines! of the band edges
of a periodic GaAs-AlAs structure with refractive indices 3.59 and
2.98, respectively. The structure has a periodd and the GaAs and
AlAs layers have thicknessesdGaAs anddAlAs , respectively.

FIG. 2. Example of a Bloch function at the top (fu , dashed
line! and bottom (f l , solid line! of the lowest photonic band gap as
a function of the relative position in the grating period, for a struc-
ture with parameters given in the text.

FIG. 3. Example of a pseudo plane wave as a function of rela-
tive position in the grating period, for a structure with parameters
given in the text. The solid line is the modulus~left-hand scale!,
while the dashed line is the phase~right-hand scale!.

1982 54de STERKE, SALINAS, AND SIPE



solid lines show the exact positions of the band gap edges,
while the dashed line shows the results assuming the struc-
ture is shallow. Recall that Eqs.~102! make use of the exact
positions of the photonic band-gap edges. Clearly, the as-
sumption that the grating is shallow leads to results that are
incorrect. Though the error in Fig. 4 may not seem very
large, it is important to note that the deviations can be a
noticeable fraction of the gap width. The grating properties
change drastically around the band edges and it is thus im-
portant to correctly calculate their positions. Figure 5 is simi-
lar to Fig. 4, but for a periodic structure consisting of layers
of GaAs and polymer (n51.5). As expected, the errors in-
troduced by the shallow grating approximation are more se-
vere in this case of larger refractive index contrast.

Turning now to the nonlinearG coefficients, recall that in
the limit in which the grating is shallow and the nonlinearity
is uniform we find thatG15G250. As a comparison we
show in Fig. 6 theG coefficients@in units of cx (3)/dvg and
with n051# for a GaAs-AlAs system, as a function of the
GaAs filling fraction. In the figure the solid line indicates
G0, the short-dashed lineG1, and the long-dashed line is
G2. As expected, fordGaAs/d→0,1 we see thatG1,2'0 as the
usual shallow grating results must then be obtained. More
generally, whileG1 and G2 are certainly smaller thanG0,
G1'0.16G0 at dGaAs/d50.44. Note also that for AlAsG0 is
more than twice as large as for GaAs; this is due to the
normalization of the Bloch functions@Eq. ~20!#. Finally, in
Fig. 7 we show similar results, but for a periodic GaAs-
polymer structure with refractive indices as above and as-
suming the nonlinearity in the polymer to vanish. Clearly, as
dGaAs/d→0 the structure is linear and all nonlinear coeffi-
cients must vanish. Further, asdGaAs/d→1, G1,250 since
the grating is then shallow and the nonlinearity is uniform.
However, in the intermediate cases the new nonlinear coef-
ficientsG1 andG2 can be as largeG0 @while still satisfying
inequality ~109!#; in such a case, therefore, use of our ap-
proach is crucial.

IX. SOLUTIONS TO THE COUPLED-MODE EQUATIONS
FOR DEEP GRATINGS

In this section we discuss some of the solitary-wave solu-
tions to the coupled-mode equations for deep gratings~102!,
both for finite ~Secs. IX A and IX B! and also for infinite
~Secs. IX C and IX D! geometries. In doing so we point out
differences with the solutions to the conventional coupled-
mode equations for shallow gratings. We note that the solu-
tions described in Sec. IX C are generalizations of those

FIG. 5. Similar to Fig. 4 but for GaAs and a polymer with a
refractive index of 1.5. FIG. 6. Nonlinear coefficientsG ~solid line!, G1 ~long-dashed

line!, andG2 ~short-dashed line! for a GaAs-AlAs structure with
refractive indices 3.59 and 2.98, respectively, in units of
cx (3)/dvg and withn051.

FIG. 7. Nonlinear coefficientsG ~solid line!, G1 ~long-dashed
line!, andG2 ~short-dashed line! for a GaAs-polymer structure with
refractive indices 3.59 and 1.5, respectively, and a vanishing non-
linearity in the polymer, in units ofcxGaAs

(3) /(dvg), and with
n051.

54 1983COUPLED-MODE THEORY FOR LIGHT PROPAGATION . . .



found in the experiments of Eggletonet al @13#.
As a general point we mention that, while the coupled-

mode equations for shallow gratings~for which G15G2

50) have well-known bright and dark solutions@7,27#, to
our knowledge Eqs.~102! have not been studied previously.
We will see that the soliton solution of Eqs.~102! can differ
qualitatively from those of the equations valid for shallow
gratings. We use two different approaches. The first of these
is a variation on that of Feng and Kneubu¨hl @7# and makes
use of Stokes parameters. The second is the method de-
scribed by Kivshar and Flytzanis@27# and allows us to find
closed-form stationary solutions in the stationary limit. In
discussing the solutions to Eqs.~102! we emphasize the in-
fluence of the extra nonlinear coefficients on the shape of the
solutions.

A. Solutions to the linearized coupled-mode equations

Recall that while the linear equations have exactly the
same form for shallow and for deep gratings, the coefficients
have different values~see Figs. 4 and 5!. Though these dif-
ferences may sometimes seem modest, we emphasize that
the properties of periodic structures near a Bragg resonance
vary rapidly as a function of wavelength. A small error in the
position of the edges of the photonic band gap, say, can thus
lead to large errors. This was discussed earlier in Ref.@21#.

Another key point in solving the present coupled-mode
equations on a finite interval is the application of the bound-
ary conditions at the interfaces with the outside media. Re-
call that in conventional coupled-mode theory the fields are
expanded in forward and backward propagating modes; since
these are also the eigenmodes of uniform media, matching
the fields across the interfaces is straightforward. This is
even true if the average refractive index in the grating differs
from the refractive indices of the outside media, leading to
Fresnel reflections at the interfaces. The reason the applica-
tion of the boundary conditions for deep gratings is more
complicated is our expansion of the fields in terms of pseudo
plane waves~see Fig. 3!, which must be matched to plane
waves in the outside media. This depends on the details of
the Bloch functions, which must therefore be calculated ex-
plicitly, even though this is not necessary to solve the
coupled mode equations@Eqs.~102!#.

B. Stationary solutions on a finite interval

It is well known that nonlinear grating structures of finite
extent can exhibit bistability@1#. This is a particularly inter-
esting case to consider as the nonlinear wave equation,
which is now an ordinary differential equation, can easily be
solved for this case, allowing a comparison with the results
from our approximate theory.

While the harmonically varying solutions of the conven-
tional coupled-mode equations on a finite interval can be
found in terms of Jacobi elliptic functions@1#, finding an
analytic solution appears to be impossible for the present
coupled-mode equations~102!. Though, of course, the result-
ing ordinary differential equations can be straightforwardly
integrated numerically, as noted above the application of the
boundary conditions requires knowledge of the details of the
Bloch functions~Fig. 2! of the periodic structure. However,

once they are known, this can be implemented in a simple
fashion.

Figure 8 gives the results of three types of calculations for
a periodic structure with parameters given in the caption:
exact results, following from a full solution of Maxwell’s
equations~solid line!, results from Eq.~102! ~short-dashed
line!, and results from standard coupled-mode theory~long-
dashed line!. Clearly, the results of our deep grating theory
are close to the exact results and are superior to those from
standard coupled-mode theory. We note in passing that all
three methods indicate the existence of a low-transmissivity
branch, which, on the present scale, coincides with the hori-
zontal axis. At high intensities this branch folds back and
links up with the branches shown in Fig. 8. Full time-
dependent simulations of the same problem have indicated
that not all solutions in Fig. 8 are stable@28,29#, but such
behavior can of course not be ascertained within the limita-
tion of harmonically varying fields.

C. Solitary-wave solutions using Stokes parameters

We next consider solitary-wave solutions to Eqs.~102! on
an unbounded interval. To do so, following previous work
@7# we look for solutions of the form

G6~z,t !5B6~z2vt !e2 ivgdt[B6~x!e2 ivgdt, ~110!

whered is a detuning. The ansatz~110! turns Eqs.~102! into
a set of two coupled ordinary complex differential equations.
Defining then the~real! Stokes parameters through

Si5B†s iB, ~111!

where thes i are the Pauli matrices andB is the column
vector with elements (B1 ,B2), it is easy to find the four real
equations for the Stokes parameters

FIG. 8. Transmissivity as a function of incident intensity for a
GaAs-AlAs thin-film stack. The stack consists of 200 periods, each
consisting of 125-nm GaAs (n53.59) and AlAs (n52.98) layers,
while l51.5522m m. Shown are the results of exact calculations
~solid line!, standard coupled-mode theory~short-dashed line!, and
Eqs.~102! ~long-dashed line!.
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S08522kS222G1S0S222G2S1S2 ,

S1852dS213GS0S22vGS3S212G1S1S22G2S0S2

1vG2S3S2 ,

S28522kS012vkS322dS123GS0S11vGS3S122G1S0
2

12vG1S0S322G1S1
22G2S0S11vG2S3S1 , ~112!

S385vS08 ,

where the prime indicates differentiation with respect tox. It
is straightforward but tedious to demonstrate that this system
has three conserved quantities, namely,

S0
22S1

22S2
22S3

250,

S32vS0 , ~113!

kS11dS01
3

4
GS0

22
1

4
GS3

21G1S0S11
1

4
G2~S1

22S2
2!.

The first of these follows from the definition of the Stokes
parameters and is a consequence of the fact that absolute
phase is unimportant here. While the system~112! with con-
served quantities~113! is now, in principle, reduced to
quadrature, the conserved quantities are sufficiently compli-
cated to prevent us finding the relevant integral in closed
form. We therefore consider a special case. We concentrate

on bright solutions for which the fields vanish asuxu→`,
though we show below that Eqs.~102! also possess other
solutions.

We note that Eqs.~112! have solutions for whichS0,
S1, andS3 are even functions, whileS2 is odd, and these are
the solutions we are considering here. These parity properties
then imply that we can define a ‘‘center,’’ which we take to
be atx50. Here we consider theSi at x50 for the solutions
of Eqs.~112!; this is not only of interest in its own right, but
also provides convenient initial conditions when solving Eqs.
~102! or ~112! numerically.

Since we are considering solutions for whichS2 is odd, it
must vanish at the center. We also note that for bright solu-
tions, for which the field envelopes must vanish atx→6`,
the second and third conserved quantities in Eqs.~113! van-
ish. Now from the first and second of the conserved quanti-
ties ~113! we then find that

S156S0 /g,

S05
4g~k2dg!

~2g211!G24gG11G2
, ~114!

S35vS0 ,

where

g51/A12v2 ~115!

is the Lorentz factor and the negative sign in the first of Eqs.
~114! is found to apply. By Eqs.~114! all Stokes parameters
are thus known; this provides a convenient starting point for

FIG. 9. Example of a soliton solution for a deep nonlinear pe-
riodic structure withk51, v50.5, andd50, while the units of
field strength have been chosen such thatauuuu52.1, auull51.9,
and a l l l l 52.1, so thatG51, G150, andG2520.9. Shown as a
function of position isuG1u21uG2u2, which is proportional to the
energy density~solid line!. As a comparison, also shown is the
solution for the case in which deep grating effects are ignored, i.e.,
G51 andG15G250, while the other parameters are unchanged
~dashed line!.

FIG. 10. Example of a soliton solution for nonlinear periodic
structure withk51, v50, andd52 1/2A2, while the units of
field strength have been chosen such thatauuuu56, auull50.25,
anda l l l l 51.5, so thatG51, G1520.5625, andG250.75. Shown
as a function of position isuG1u21uG2u2, which is proportional to
the energy density. As a comparison, also shown is the solution for
the case in which deep grating effects are ignored, i.e.,G51 and
G15G250, while the other parameters are unchanged~dashed
line!.
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finding the solitary-wave solutions numerically. Note that,
although by definitionS0 is a positive quantity, the right-
hand side of the second of Eqs.~114! can be negative, espe-
cially when G1 is sufficiently large. Such solutions, which
are not prevented by inequality~109!, must be disregarded.

Since all Stokes parameters are known, the system~112!
can also be used to evaluate higher derivatives. In particular,
it can be shown thatS09 can be either positive or negative. In
the latter case the solution would be expected to be singly
peaked, while in the former case it must exhibit auxiliary
peaks for it to vanish asx→6`. Examples of both types of
solutions are shown in Figs. 9 and 10. In both figures the
solid lines represent solutions to the full coupled-mode equa-
tions ~102!, while the dashed lines represent the associated
solutions for shallow gratings, obtained by ignoring the non-
linear terms proportional toG1 and G2. We note that the
double-peaked solution in Fig. 10 is typical for deep gratings
and does not occur in shallow gratings, for which the solu-
tions @5# are always single peaked. We note in passing that
the new solutions shown in Figs. 9 and 10 can be considered
to be generalization of the grating solitons observed by Egg-
letonet al. @13# in a shallow grating.

D. Stationary solitary-wave solutions

Another limit in which exact results can be obtained is
whenv50, i.e., when the solitary wave is stationary. These
solutions can be found using a number of different methods,
including that of Kivshar and Flytzanis@27#, who applied it
to the closely related problem of nonlinear discrete lattices. It
is their approach we use here. To start we use Eqs.~100!,
which, of course, are fully equivalent to the coupled-mode
equations~102!. We set

f l ,u~z,t !5g1,2~z!e2 idt ~116!

and take theg1,2 to be real. This implies that the envelope
functionsG6 @see Eq.~101!# are each other’s complex con-
jugate, as is the case for the stationary solitary-wave solu-
tions to the shallow gratings. This substitution leads to the
equations

g1852D2g21a1g2
313a2g1

2g2 ,

g2851D1g12a3g1
323a2g2

2g1 , ~117!

for convenience, we have seta15auuuu, a25auull , and
a35a l l l l . Further,

D152D/22d, D25D/22d, ~118!

and the prime indicates differentiation with respect to
z/vg . Note from definitions~118! that at the top of the pho-

tonic band gap (d5D/2) we haveD152D and D250,
while at the bottomD150 andD25D. Equations~117! are
very similar to those of Kivshar and Flytzanis@27#, but have
more complicated nonlinear terms. It is easy to see that Eqs.
~117! form a Hamiltonian system withg1,2 playing the roles
of q andp, respectively, and with

H52
1

2
~D1g1

21D2g2
2!1

1

4
~a3g1

416a2g1
2g2

21a1g2
4!.

~119!

Now each orbit of this Hamiltonian corresponds to a solution
pair (g1 ,g2). However, the solitary-wave solutions, i.e., so-
lutions that settle to definite values asz→`, correspond to
the separatrices. We must therefore identify the fixed points
of the system~117! and the orbits connecting the saddle
points. Orbits starting and finishing at the origin in (g1 ,g2)
space correspond to bright solitary waves, while others cor-
respond to dark and gray solitary waves and to bright solu-
tions on a pedestal@27#.

Below we discuss some of these solutions. In doing so we
assume that the nonlinearity is positive and thusa1,2,3.0. It
is easy to see that for negative nonlinearities the solutions are
very similar. If the spatial distribution of the nonlinearity is
chosen such that not all nonlinear coefficientsa i have the
same sign, then an entirely new class of solutions becomes
possible, but we do not cover these here. In discussing the
solutions we identify three different regimes@27#. The first
of these is defined byd.D/2; here the frequency isabove
the photonic band gap. SinceD1,2,0 in this regime we find
that the origin is the only fixed point and that it is a stable
center. For this reason there are no solitary-wave solutions.

We next consider frequencies such that2D/2,d,D/2,
i.e., frequencies within the photonic band gap. NowD1,0,
while D2.0; the system of equations~117! has a saddle at
the origin and two stable centers atg150 and
g256Aa1 /D2. The only type of solution corresponds to the
separatrix connecting the origin with itself, corresponding to
a bright solitary wave. To find these solutions explicitly we
define, following the analysis of Kivshar and Flytzanis@27#,
the ratior[g1 /g2, which can be shown to satisfy

r 85~D21D1r
2!214E~a116a2r

21a3r
4!, ~120!

whereE is the value of the ‘‘energy’’ corresponding to the
particular orbit associated with HamiltonianH @Eq. ~119!#;
for the case we are considering hereE50 since the orbits
include the origin. Equation~120! is now seen to yield

r5A2D2 /D1tanh~A2D1D2z/vg![A2D2 /D1tanh~Cz!.
~121!

Finally, then, the solutions forg1,2 are found to be

g15F 22D1D2
2

a1D1
2cosh4~Cz!26a2D1D2cosh

2~Cz!sinh2~Cz!1a3D2
2sinh4~Cz!G

1/2

sinh~Cz!,

g25F 2D2D1
2

a1D1
2cosh4~Cz!26a2D1D2cosh

2~Cz!sinh2~Cz!1a3D2
2sinh4~Cz!G

1/2

cosh~Cz!, ~122!
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whereC was defined in Eq.~121!. Using Eqs.~116! and
~101!, solutions to Eqs.~102! can then be found. It is inter-
esting to note that in the shallow grating limit, in which
a15a353a2 @see the discussion below Eq.~105!#, the de-
nominators in Eqs.~122! can be factored into a perfect
square, so that simple expressions forg1,2 result; these are
identical to those of Aceves and Wabnitz@5# and Feng and
Kneubühl @7#. However, as shown in Sec. IX C, the solutions
~122! can be qualitatively different from the associated shal-
low grating solutions~see Fig. 10!.

We now finally turn to the third regime, where
d,2D/2; here the frequency is below the bottom of the
photonic band gap, so thatD1,2.0. There is now a larger
number of critical points, the character of which depends on
the relative sizes of the nonlinear coefficientsa i and on the
detuning. However, for values ofd just below the photonic
band gap there are two types of dark solutions, independent
of the details of thea parameters, which are similar to those
for shallow gratings~cf. Refs.@7# and@27#!. Using a method
similar to that described above, they can be found to be

g25A ~D21D1r
2!6r 8

a116a2r
21a3r

4,

g15rg2 , ~123!

where

r5A D2
22a1D1

2/a3

2D1~D223a2D1 /a3!

3sinh@A2D1~D223a2D1 /a3!z/vg#. ~124!

It was shown in Refs.@27# and @7# that these solutions rep-
resent dark solitary waves~where the minus sign applies! in
Eq. ~123! and bright solitary waves on a pedestal~where the
plus sign applies!. These two types of solutions correspond
to the large, ovoid orbits in Fig. 11. The existence of such
solutions was also pointed out in Ref.@6#.

Recall that for detuningsd well below the photonic band
gap of deep gratings other critical points, with associated
solitary-wave solutions, can appear; these have no equivalent
in shallow gratings. The positions of these critical points are
summarized in Table I. The critical points labeled as type I,
II, and III occur also in shallow gratings with uniform non-
linearity, while type IV is different. This can be seen from
Table I by realizing that if the grating is shallow and the
nonlinearity is uniform thena1a359a2

2, shifting the
type-IV critical points to infinity. Of course, the type-IV
critical points exist only for detunings such thatg1 andg2
are real.

As mentioned, the critical point at the origin~type I! is
always a center for frequencies below the photonic band gap.
The nature of the other critical points depends on the detun-
ing and on the nonlineara coefficients. Details can be found
in Table II. The frequency dependence is associated with
pitchfork bifurcations, which, depending on the relative val-
ues of the a i , may occur for frequencies such that
D1 /D253a2 /a1 and D1 /D25a3 /(3a2) ~see Table II!.
Rather than discussing the ensuing solitary-wave solutions in
detail, here we just sketch the types of orbits in the

(g1 ,g2) plane, from which the qualitative features of the
solutions can then be learned. There are essentially two types
of sets of solutions. Some typical examples are shown Figs.
11 and 12, while conditions for their existence are indicated
in Table II. The orbits in Fig. 11 correspond to three different
types of solitary-wave solutions. The small, butterfly-shaped
orbits are unique to deep gratings, while the larger, ovoid
orbits are very similar to the solitary-wave solutions found
by Kivshar and Flytzanis@27#. The orbits in Fig. 12 corre-
spond to four different types of solutions, all of which are
unique to deep gratings. Though it is certainly possible to
find explicit expressions for these solutions, we do not give
them here.

X. DISCUSSION AND CONCLUSIONS

We have presented a systematic approach to obtaining the
envelope-function equations for periodic media. Since it is
based upon the Bloch functions of the structure, it is valid for

FIG. 11. Separatrices in the (g1 ,g2) plane, corresponding to
stationary solutions to the coupled-mode equations. The particular
parameters arek51 andd526, while the units of field strength
have been chosen such thata151.0 anda250.2, a350.9. Two
types of orbits are shown, corresponding toE526.94~large, ovoid
orbits! andE5212.25~small, butterflylike orbits!, whereE is the
‘‘energy’’ corresponding to the orbit according to Hamiltonian
~119!. While the saddle points can be clearly seen, the circles cor-
respond to the positions of the centers.

TABLE I. Overview of positions of critical points for
d,2D/2, i.e., frequencies below the bottom of the photonic bad
gap. The critical points of course exist only ifg1 andg2 are real.

Type g1 g2

I 0 0
II 0 6AD2 /a1

III 6AD1 /a3 0

IV
6Aa1d123a2D2

a1a329a2
2 6Aa3d223a2D1

a1a329a2
2
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shallow as well as deep gratings and also properly treats
gratings with a nonuniform nonlinearity. While the
envelope-function equations for shallow gratings can easily
be derived heuristically, it is known that this method is in-
ternally inconsistent and arrives at the correct answer some-
what fortuitously@17#. In contrast, the method described in
the present paper is systematic and thus so are the results
obtained using it. While, as mentioned, the recent experi-
mental results of Eggletonet al. @13# can be described by
conventional coupled-mode theory, extensions of such ex-
periments to material systems allowing for deeper gratings
may require the more complete theory decribed here.

The many results presented in this paper are valid for
different regimes, which depend on the relative importance

of the nonlinearity and the dispersion and also on the amount
of detail of the photonic dispersion curve that is required.
The latter is determined mostly by the spectral width of the
source; the wider the spectrum, the more details required.
Though many of our results have been derived earlier, our
systematic approach makes it clear under what conditions the
various final results are to be used. This is somewhat similar
to Agrawal’s approach in which various physical phenomena
are assigned different length scales, thus indicating their rela-
tive importance@15#.

Perhaps our main result is Eq.~102!, which is derived for
an intensity indexs51 ~see Sec. IV! and makes use of two
Bloch functions from the photonic band structure. It is a
generalization of the well-known nonlinear coupled-mode
equations for shallow gratings. While even for moderately
deep grating structures, such as those consisting of GaAs and
AlAs, the conventional coupled-mode equations for shallow
structures are remarkably accurate~see Fig. 4!, it should be
kept in mind that for frequencies around the edges of the
photonic band gap the grating properties change drastically.
A correct description in this region is thus of particular im-
portance. Nevertheless, it is fair to conclude that deep grating
effects are unlikely to be of importance in fiber gratings,
where the refractive jump does not exceed 0.04.

An open question at this point is the importance of the
remote band effects. As mentioned in the discussion follow-
ing Eqs. ~90!, the remote bands, the bands whose Bloch
functions enter the analysis only through the companion
terms at high orders, lead to an additional~slight! curvature
of the bands. At frequencies near the photonic band gap this
curvature is negligible compared to the dispersion due to the
dynamic interaction of the two bands constituting the princi-
pal terms. But further from the gap, the strength of the dy-
namic interaction drops and remote band effects become
more important, though it is not clear how significant they
are compared to the intrinsic dispersion of the constituent
materials, an effect that has been neglected in our calcula-
tions. The latter effect must dominate sufficiently far from
Bragg resonances. Initially, the only way to settle this prob-
lem is probably on a case-by-case basis.

Possible generalizations of our theory easily come to

TABLE II. Overview of types of the critical points ford,2D/2, i.e., frequencies below the photonic
band gap; note that the origin~type I! is always a center for these frequencies. The explicit frequency
dependence enters through the ratior[D1 /D2. The entries NA indicate that type-IV critical points do not
exist if a1,3a2,a3. The last column gives the types of separatrices these new critial points give rise to and
refers to Figs. 11 and 12. As discussed in the text, these correspond to stationary solitary-wave solutions to
the coupled-mode equations. The entry 90° refers to a rotation over 90° of the orbits in the figure.

Condition 1 Condition 2 Type II Type III Type IV Orbit

a1 ,a3,3a2 a1a3,9a2
2 center r,a3/3a2: saddle saddle Fig. 12

r.a3/3a2: center
a1 ,a3.3a2 a1a3.9a2

2 r,3a2 /a1: center saddle center Fig. 11
r.3a2 /a1: saddle

a1,3a2,a3 center saddle NA NA
a3,3a2,a1 a1a3,9a2

2 r,3a2 /a1: center r,a3/3a2: saddle saddle Fig. 12
r.3a2 /a1: saddle r,a3/3a2: center

a3,3a2,a1 a1a3.9a2
2 r,3a2 /a1: center r,a3/3a2: saddle center Fig. 11

r.3a2 /a1: saddle r.a3/3a2: center (90°)

FIG. 12. Separatrices in the (g1 ,g2) plane, corresponding to
stationary solutions to the coupled-mode equations. The particular
parameters arek51 andd525, while the units of field strength
have been chosen such thata151.0,a250.6 anda350.9. Further,
E524.06, whereE is the ‘‘energy’’ corresponding to the orbit
according to Hamiltonian~119!. While the saddle points can be
clearly seen, the circles correspond to the positions of the centers.
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mind. Apart from the inclusion of material dispersion, an-
other generalization is to include more than two principal
components and thus treat fewer bands as remote. Clearly,
the more principal components included, the better the final
results, but at the expense of more complicated final results
~note that the number of coupled equations in the final result
equals the number of principal components!. We note that
this is a standard procedure in solid state physics, where the
number of bands included ink•p calculations, for example,
to calculate the band structure of superlattices increases with
the desired accuracy@22#. However, it follows from our ap-
proach that it is not very useful to improve the description of
the dispersive properties without a similar effort for the non-
linear properties.

Though we did find different types of solutions to the
present coupled-mode equations, such solutions are unlikely
to be observed experimentally in the near future due to the
high-intensity levels required. The features of low-intensity
solutions of the two equations are very similar. This is not
surprising because the physical mechanism, Bragg reflection,
is, of course, unchanged.

With respect to other applications of our method we note
that a coupled-mode-like theory can also be used to describe
grating superstructures@30–32#; while for shallow super-
structures standard coupled-mode theory can be extended
straightforwardly, for deep superstructures this is not suffi-

cient @30#. Although we do not treat grating superstructures
here, the method we have developed can also be applied to
treat such deep superstructures@31#.

In conclusion, we have presented a systematic approach
to the derivation of envelope-function equations for nonlin-
ear periodic media. Perhaps unexpectedly, we find that it is
possible to derive coupled-mode equations, very much like
those that hold for shallow gratings in regimes well beyond
where one might naively expect equations of this sort to be
valid. Our results reduce to well-known equations in the ap-
propriate limits. We have also presented some of the solu-
tions to these different equations. While they have features
that differ qualitatively from those of the solutions to the
conventional equations, these occur most clearly at high in-
tensities, which, as yet, are experimentally inaccessible.
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